Role of Cortico-Cancellous Heterologous Bone in Human Periodontal Ligament Stem Cell Xeno-Free Culture Studied by Synchrotron Radiation Phase-Contrast Microtomography
نویسندگان
چکیده
This study was designed to quantitatively demonstrate via three-dimensional (3D) images, through the Synchrotron Radiation Phase-Contrast Microtomography (SR-PhC-MicroCT), the osteoinductive properties of a cortico-cancellous scaffold (Osteobiol Dual Block-DB) cultured with human Periodontal Ligament Stem Cells (hPDLSCs) in xeno-free media. In vitro cultures of hPDLSCs, obtained from alveolar crest and horizontal fibers of the periodontal ligament, were seeded onto DB scaffolds and cultured in xeno-free media for three weeks. 3D images were obtained by SR-PhC-microCT after one and three weeks from culture beginning. MicroCT data were successively processed with a phase-retrieval algorithm based on the Transport of Intensity Equation (TIE). The chosen experimental method, previously demonstratively applied for the 3D characterization of the same constructs in not xeno-free media, quantitatively monitored also in this case the early stages of bone formation in basal and differentiating conditions. Interestingly, it quantitatively showed in the xeno-free environment a significant acceleration of the mineralization process, regardless of the culture (basal/differentiating) medium. This work showed in 3D that the DB guides the osteogenic differentiation of hPDLSCs in xeno-free cultures, in agreement with 2D observations and functional studies previously performed by some of the authors. Indeed, here we fully proved in 3D that expanded hPDLSCs, using xeno-free media formulation, not only provide the basis for Good Manufacturing Practice (preserving the stem cells' morphological features and their ability to differentiate into mesenchymal lineage) but have to be considered, combined to DB scaffolds, as interesting candidates for potential clinical use in new custom made tissue-engineered constructs.
منابع مشابه
Canine Periodontal Stem Cells: Isolation, Differentiation Potential and Electronic Microscopic Characterization
Objective- Investigating of the isolation, culture, differentiation potential and electronic microscopic characterization of canine periodontal ligament stem cells (PDLSCs). Design- Experimental in vitro study Animals- Four intact, male, mongrel dogs, 8-10 months-old were selected to collect PDLSCs from their teeth. Procedures- The dogs were anesthetized and the first maxillary and mandibula...
متن کاملSynchrotron radiation-based microtomography of alveolar support tissues.
OBJECTIVES To study the alveolar support structures using synchrotron radiation (SR)-based microtomography with particular focus on the alveolar surface. DESIGN High-resolution microtomography of jaw segments of various species and subsequent three-dimensional (3D) reconstruction. SETTING AND SAMPLE POPULATION Microtomography was performed at the DORIS-ring of the synchrotron facility of HA...
متن کاملTooth Regeneration with Stem Cell Sources
Introduction: During the last decade, advances in tissue engineering and stem cell-based tooth regeneration have provided realistic and attractive means of replacing lost or damaged teeth. The first adult stem cells isolated from dental tissues were dental pulp stem cells (DPSCs). When transplanted with hydroxyl apatite/tri calcium phosphate (HA/TCP) powder, they formed a dentin-like structure...
متن کاملThe potential of human-derived periodontal ligament stem cells to osteogenic differentiation: An In vitro investigation
Background: Periodontal ligament stem cells (PDLSCs) are considered as a type of mesenchymal stem cell that is beneficial target for numerous clinical applications in periodontal tissue regeneration therapy. Materials and Methods: This study examined the effects of dexamethasone (Dex) on human PDLSCs in vitro. PDLSCs obtained from the roots of patient’s teeth were cultured with Dex (0....
متن کاملAdvanced tissue engineering in periodontal Regeneration
The old wishes of people were to regenerate lost tissues of periodontium that this fact is achieved by gen and cell therapy .Periodontal disease is a chronic inflammation around the tooth by microbes that causes destruction of supporting structure of tissue of tooth such as alveolar bone, cementum and periodontal ligament. For treatment of periodontal diseases we can use the biomaterials which ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2017